If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y2 + -1y + -3 = 0 Reorder the terms: -3 + -1y + y2 = 0 Solving -3 + -1y + y2 = 0 Solving for variable 'y'. Begin completing the square. Move the constant term to the right: Add '3' to each side of the equation. -3 + -1y + 3 + y2 = 0 + 3 Reorder the terms: -3 + 3 + -1y + y2 = 0 + 3 Combine like terms: -3 + 3 = 0 0 + -1y + y2 = 0 + 3 -1y + y2 = 0 + 3 Combine like terms: 0 + 3 = 3 -1y + y2 = 3 The y term is -1y. Take half its coefficient (-0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. -1y + 0.25 + y2 = 3 + 0.25 Reorder the terms: 0.25 + -1y + y2 = 3 + 0.25 Combine like terms: 3 + 0.25 = 3.25 0.25 + -1y + y2 = 3.25 Factor a perfect square on the left side: (y + -0.5)(y + -0.5) = 3.25 Calculate the square root of the right side: 1.802775638 Break this problem into two subproblems by setting (y + -0.5) equal to 1.802775638 and -1.802775638.Subproblem 1
y + -0.5 = 1.802775638 Simplifying y + -0.5 = 1.802775638 Reorder the terms: -0.5 + y = 1.802775638 Solving -0.5 + y = 1.802775638 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.5' to each side of the equation. -0.5 + 0.5 + y = 1.802775638 + 0.5 Combine like terms: -0.5 + 0.5 = 0.0 0.0 + y = 1.802775638 + 0.5 y = 1.802775638 + 0.5 Combine like terms: 1.802775638 + 0.5 = 2.302775638 y = 2.302775638 Simplifying y = 2.302775638Subproblem 2
y + -0.5 = -1.802775638 Simplifying y + -0.5 = -1.802775638 Reorder the terms: -0.5 + y = -1.802775638 Solving -0.5 + y = -1.802775638 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.5' to each side of the equation. -0.5 + 0.5 + y = -1.802775638 + 0.5 Combine like terms: -0.5 + 0.5 = 0.0 0.0 + y = -1.802775638 + 0.5 y = -1.802775638 + 0.5 Combine like terms: -1.802775638 + 0.5 = -1.302775638 y = -1.302775638 Simplifying y = -1.302775638Solution
The solution to the problem is based on the solutions from the subproblems. y = {2.302775638, -1.302775638}
| 7n+5-2n=25 | | 2+7v=v+5v | | 3+-4y=19 | | 12x+16=32x+16-20x | | 6x+5=23 | | 3(x+6)=5x+8-2+10 | | 4x^2-24x+54=0 | | 2x-8-x=-3 | | 6y^2-3y-3=0 | | v-2=2 | | 12m+75=495 | | 6+3(x-3)=2(3x-4) | | 5x+7=6x+5 | | 2(2r-8)/5=2r-5/4 | | 14-w=5 | | e^7-4x=5 | | 7b^2+18b+8=0 | | 3x+4+8x+4+x=180 | | 6-r=5 | | 9x-3=9(x+3) | | 0=(-16x^2+64x+336) | | (x+4)8=64 | | 5+4d=85 | | 9x^2+x-1=9x^2+x+7 | | 14-z=6 | | 16+x=16 | | 5(x-3)-10=20 | | 8x-22=-50 | | 4(3y-1)=5y+11 | | a^2+18a+81= | | 18-k=9 | | s=6r+ph |